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A multi-stage model of core formation

• No single meteorite type matches the bulk compositions of the terrestrial 
planets [1]. Past studies have used various chondrite mixtures [2,3,4].

• We used CI material that was partially depleted of volatile elements.
• The oxygen fugacity (fO2) of a body influences partitioning between the 

core and mantle.
• Martian rocks are rich in oxidized iron (FeO). This indicates a higher fO2, 

which may be due to Mars’ distance from the Sun [5].

1. Small bodies are built and differentiated 2. The small bodies accrete to proto-Mars
• We model accretion by adding small 

bodies to proto-Mars and equilibrating 
each one sequentially. 

• The entire impactor may not always mix 
with the entire target [6], so we equilibrate 
a fraction of the impactor core with a
fraction of the target mantle. 

• We find that on average, >60% of impactor 
core material mixes and equilibrates with 
the target mantle.

3. The core and mantle equilibrate

• Partitioning is parametrized by high 
pressure/temperature metal-silicate 
partitioning experiments [7, 8, 9].

• Equilibration takes place at the liquidus 
temperature [10] and a fraction of the 
CMB pressure [6]. 

• We find an average equilibration depth of 
50% – 80% of the CMB pressure. 

4. The planet is done
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The Martian 
Composition

Mantle
wt % (± 2σ)

SiO2 44.3 2.31
MgO 30.7 1.60
FeO 17.9 4.25

Al2O3 3.08 0.160
CaO 2.43 0.129
Na2O  0.68 0.036

S 0.067 0.020
Ni    0.041 0.025
Co    0.013 0.0060
W         7.5e-6 5.1e-6

Core
wt % (± 2σ)

Fe 74.2 2.75
S 18.2 2.28
Ni 7.00 0.820
O 0.34 0.19

Co 0.29 0.020
Si 8.1e-5 6.8e-5

• Each set of parameters corresponds to a single core radius; this allows us to predict Mars' 
internal structure.

• Sources of uncertainty include the thickness of the crust, the internal temperature, and the 
density of liquid Fe – S alloys at the relevant conditions.

Above: A comparison between compositions from our model 
and ones from meteorite data [2,3,4]. 

Right: The modeled composition that best matches Taylor 
(2013) [2]. This corresponds to an initial fO2 of ΔIW = -1.2.
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• Terrestrial planets are made of silicate minerals and 
iron-rich metal.

• We can model planetary formation as partitioning 
between these two phases. 

• This model accounts for geophysical and 
geochemical constraints, and quantifies the 
influence of formational parameters on the 
Martian core and mantle. 

Introduction
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Hot, sparse regions 
are reducing and 
metal rich.

Cooler regions have 
more volatiles, so 
conditions are more 
oxidizing.

Left: Influence of core temperature on seismic 
phase arrival times. Phases in black do not 
interact with the core.

Right: Influence of core temperature on 
planetary normal modes. Most of these may not 
be observable by InSight [13], but a large 
enough marsquake might help distinguish 
between various models. 

Inner Disk Outer Disk

Above: The influence of two geophysical parameters on Mars’ density profile. All of these are 
consistent with the observational constraints on the Martian core radius [12], but NASA InSight may 
help narrow down the range of acceptable parameters.
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Shaded regions are consistent 
with both the modeled and 
published values [2,11].

Shaded regions are consistent 
with both the modeled and 
published values [2,11].
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