
Geochemical evidence: Hf–W  
• The hafnium–tungsten (Hf–W) decay system is often used to date core formation due to the 

short half-life of 182Hf and the differing metal–silicate affinity of its daughter product (182W).
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• 𝑓𝑓 ⁄𝐻𝐻𝐻𝐻 𝑊𝑊 is the ratio of stable 180Hf to stable 
183W, and describes how strongly siderophile 
W is during core formation.

• 𝜀𝜀182𝑊𝑊 is the ratio of radiogenic 182W to 
non-radiogenic 183W, and describes how 
early core formation was completed.

Background/Motivation
• The Martian mantle is enriched in iron and moderately-volatile elements, but

depleted in chalcophile elements relative to Earth’s mantle [1].
• These properties could be explained if Mars formed from volatile-rich, 

oxidized materials. Materials like these are likely to have condensed further 
out in the protoplanetary disk [2].

• Uncovering the narrative of Martian formation requires combining 
geochemical evidence with models of planetary accretion and core formation.

• Our previous modeling of major, minor, and trace elements during Martian 
core formation [3] suggests a high degree of metal–silicate equilibration, 
which can be further tested with the Hf–W system.
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Hf refractory
lithophile

180Hf Stable
182Hf Unstable (t1/2 = 9 Myr)

W refractory
siderophile

183W Stable
182W Stable (daughter of 182Hf)

To calculate the evolution of 𝜀𝜀182𝑊𝑊, 
previous studies [e.g., 4,6] usually 
assumed that core formation occurred 
at a discrete time (colored lines). 

However, realistic planetary growth is 
episodic, with portions of core 
material being added with each 
accreted body. The black line shows 
one example of a more complex 
history that also can match the 
Martian 𝜀𝜀182𝑊𝑊.

Future work

Temperature decreases with distance from the sun, allowing 
more volatiles (including O-bearing species) to condense. 
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Decay of 182Hf (blue) to 182W (yellow) during and after core formation. 
Bodies that differentiate early end up with more 182W in their mantles.

• 𝜀𝜀182𝑊𝑊 of Earth (1.9 ± 0.2) [4] and Mars (2.4 ± 0.5) [4] are similar. The smaller 
𝑓𝑓 ⁄𝐻𝐻𝐻𝐻 𝑊𝑊 value in Mars means that its core formation must have ended earlier [e.g., 
6] to build up a similar 𝜀𝜀182𝑊𝑊.

• Earth’s 𝑓𝑓 ⁄𝐻𝐻𝐻𝐻 𝑊𝑊 (12 ± 2) [4] is larger than the value for Mars (2.0 ± 0.8) [4] 
because W is less siderophile at higher pressures [e.g., 5].
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Core formation: preliminary results  
Using a set of Grand Tack N-body outputs [8], we have modeled the metal–silicate partitioning of 
W [5] during accretion of 18 Mars analogues and tracked the decay of 182Hf. The analogues’ final 
𝜀𝜀182𝑊𝑊 and 𝑓𝑓 ⁄𝐻𝐻𝐻𝐻 𝑊𝑊 signatures are highly sensitive to the style and timing of core formation. 

The 𝜀𝜀182𝑊𝑊 values of the Mars analogues versus 
their 𝑓𝑓 ⁄𝐻𝐻𝐻𝐻 𝑊𝑊. Times are relative to CAI 
condensation. Most analogues reach 50% mass 
before the start of the simulation at 3 Myr [6].

Timing of formation

Median 𝜀𝜀182𝑊𝑊 of Mars analogues for different 
degrees of metal–silicate equilibration. More 
equilibration lowers 𝜀𝜀182𝑊𝑊. Error bars represent 
lower and upper quartiles.

Partial equilibration

Analogue 𝑓𝑓 ⁄𝐻𝐻𝐻𝐻 𝑊𝑊 versus the location of the reduced-
to-oxidized transition. A larger reduced region leads 
to higher m𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓 ⁄𝐻𝐻𝐻𝐻 𝑊𝑊(black bars) and more 
analogues with high 𝑓𝑓 ⁄𝐻𝐻𝐻𝐻 𝑊𝑊 (top numbers). 
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Oxidation state of protoplanetary diskExcept where 
indicated, core 
formation calculations 
were performed with 
the following model 
parameters:

Time of 
differentiation 0.01 Myr

Time of 
simulation start 3 Myr

kcore 1.0

kmantle 1.0

Inner disk fO2 IW–4.0

Outer disk fO2 IW–1.5

Location of fO2 
step 1.4 AU

• N-body simulations may be run in 
different dynamical regimes, such as 
EJS/CJS [9], which imply different 
amounts of mixing between the inner and 
outer disks [e.g., 10].

• Complete core formation simulations 
include partitioning of other elements and 
self-consistent fO2 evolution [e.g., 11].

• Many of the Mars analogues 
experience most of their growth 
during the pre-simulation “oligarchic 
regime” [e.g., 6]. This period may 
have significantly influenced their 
initial Hf–W signatures.

Planetary accretion: N-body models  
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Mass starts out distributed at the 
disk midplane. 

Jupiter migrates inwards to 
truncate the disk at 1.2 AU.

Jupiter recedes back. Bodies 
gravitationally interact and collide, 
forming larger protoplanets. 

Only a few planets remain. 
Their material comes from a 
range of initial orbits.
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• N-body models simulate the 
mutual gravitation of a large 
number of protoplanetary 
bodies. Examining the 
resulting solar system 
configurations can reveal 
possible planetary dynamical 
histories.

• The behavior of the gas giants 
influences terrestrial planet 
accretion. Here, we examine 
the Grand Tack [7], in which 
Jupiter truncates the early disk. N-body growth histories of our Mars 

analogues [8]. Times are post-CAI.

(1) Martian values
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