An Analytical Method for Calculating Metal–Silicate Partitioning

By M. C. Brennan

Differentiation

- Terrestrial bodies originated from reservoirs of homogenous material similar in composition to the Sun.
- At some point, bodies above a critical size melted and differentiated into a rocky mantle and a metallic core.
 - Rocks are mostly made of silicate minerals.
- Chemical reaction during differentiation determine the size and composition of the two parts (or phases).

Oxygen fugacity (fO₂)

- One of the most important parameters during differentiation is the amount (or *fugacity*) of oxygen (O) atoms present.
 - Silicates are rich in O, but metals have few to no O atoms.
- An O-rich (high fO₂) planet will have a small core, with most of the iron (Fe) in the mantle.
- An O-poor (low fO_2) planet will have a large core containing most of the planet's Fe.

Elements

- The vast majority of atoms in a planet fall into one of four categories:
 - Oxygen (O): the most abundant element, determines the relative size of the core and mantle phases
 - Iron (Fe): present in both core and mantle phases (proportions determined by fO₂)
 - Siderophile (Sp): "iron-loving" elements that always enter the core phase
 - Lithophile (Lp): "rock-loving" elements that always enter the mantle phase
- It is possible to calculate the outcome of metal—silicate partitioning using only fO₂ and the ratios between Fe, Sp, and Lp.

Element accounting

 Total number (N) of atoms in a planet equals the sum of the atoms in the core and mantle.

•
$$N_{planet} = N_{core} + N_{mantle} = N_{Fe} + N_{Sp} + N_{Lp}$$

- The core consists of all the siderophile elements and a portion of the Fe.
 - $N_{core} = N_{Sp} + N_{Fe}^{core}$
- The mantle consists of all the lithophile elements and the rest of the Fe.

•
$$N_{mantle} = N_{Lp} + N_{Fe}^{mantle} = N_{Lp} + (N_{Fe} - N_{Fe}^{core})$$

 Notice that we calculated the total atoms without O, which will be accounted for using fO₂.

Accounting for O

- In planets, fO_2 is measured relative to a *mineral redox buffer*.
 - The iron–wüstite (IW) buffer: $2 Fe + O_2 \rightleftharpoons 2 FeO$
 - All elements in the mantle are attached to O atoms, so we can use wüstite (FeO) interchangeably with "mantle Fe"
- This allows us to express fO_2 as a function of iron activities (a)
 - $a_{element} = \gamma_{element} \times X_{element}$
 - X is a mole fraction, the ratio of atoms of an element to total atoms in the phase
 - γ is an *activity coefficient*, a chemical parameter specific to a particular element and phase. It is usually assumed that $\gamma=1$.
- Therefore, from the definition of the IW buffer:

•
$$fO_2(\Delta IW) = 2 \times \log_{10}\left(\frac{a_{FeO}^{mantle}}{a_{Fe}^{core}}\right) = 2 \times \log_{10}\left(\frac{X_{FeO}^{mantle} \times \gamma_{FeO}^{mantle}}{X_{Fe}^{core} \times \gamma_{Fe}^{core}}\right) \approx 2 \times \log_{10}\left(\frac{X_{FeO}^{mantle}}{X_{Fe}^{core}}\right)$$

Partitioning

- The partitioning of a substance between two coexisting chemical phases (such as a core and a mantle) is defined by a partition coefficient (D).
 - *D* is the ratio of the molar concentrations of the substance in each phase:

•
$$D_{element} = \frac{X_{element}^{phase\ A}}{X_{element}^{phase\ B}}$$
, where $D = \infty$ if all the atoms are in A, and $D = 0$ if all the atoms are in B

- For Fe in a differentiated planet: $D_{Fe} = \frac{X_{Fe}^{core}}{X_{FeO}^{mantle}}$
- This can be substituted in to our fO_2 expression:

•
$$fO_2 (\Delta IW) \approx 2 \times \log_{10} \left(\frac{X_{FeO}^{mantle}}{X_{Fe}^{core}} \right) = 2 \times \log_{10} \left(\frac{1}{D_{Fe}} \right)$$

•
$$D_{Fe} \approx \frac{1}{10^{(fO_2/2)}} = 10^{(-fO_2/2)}$$

• Thus, choosing the fO_2 of partitioning determines the planet's D_{Fe} .

Partitioning (cont.)

• Recall that *X* is the ratio of Fe atoms to total atoms in the phase:

•
$$D_{Fe} = \frac{X_{Fe}^{coree}}{X_{FeO}^{mantle}} = \frac{\binom{N_{Fe}^{core}}{/N_{core}}}{\binom{N_{FeO}^{mantle}}{/N_{mantle}}}$$

We can now reintroduce some terms:

$$\bullet \ D_{Fe} = \frac{\binom{N_{Fe}^{core}}{/_{N_{core}}}}{\binom{N_{FeO}^{mantle}}{/_{N_{mantle}}}} = \frac{\binom{N_{Fe}^{core}}{/_{N_{core}}}}{\binom{(N_{Fe}^{-N_{Fe}^{core}})}{/_{(N_{total} - N_{core})}}} = \frac{\binom{N_{Fe}^{core}}{/_{(N_{Fe}^{-N_{Fe}^{core}} + N_{Sp})}}}{\binom{(N_{Fe}^{-N_{Fe}^{core}})}{/_{(N_{planet} - (N_{Fe}^{core} + N_{Sp}))}}}$$

$$\bullet \ D_{Fe} = \frac{N_{Fe}^{core}}{\left(N_{Fe}^{core} + N_{Sp}\right)} \times \frac{\left(N_{planet} - \left(N_{Fe}^{core} + N_{Sp}\right)\right)}{\left(N_{Fe} - N_{Fe}^{core}\right)} = \frac{\left(N_{Fe}^{core} \times N_{planet}\right) - \left(N_{Fe}^{core}\right)^2 - \left(N_{Fe}^{core} \times N_{Sp}\right)}{\left(N_{Fe}^{core} \times N_{Fe}\right) - \left(N_{Fe}^{core}\right)^2 + \left(N_{Sp} \times N_{Fe}\right) - \left(N_{Fe}^{core} \times N_{Sp}\right)}$$

Partitioning (cont.)

• Simplifying further:

•
$$D_{Fe} = \frac{(N_{Fe}^{core} \times N_{planet}) - (N_{Fe}^{core})^2 - (N_{Fe}^{core} \times N_{Sp})}{(N_{Fe}^{core} \times N_{Fe}) - (N_{Fe}^{core})^2 + (N_{Sp} \times N_{Fe}) - (N_{Fe}^{core} \times N_{Sp})}$$

$$\quad D_{Fe}(N_{Fe}^{core} \times N_{Fe}) - D_{Fe}(N_{Fe}^{core})^2 + D_{Fe}(N_{Sp} \times N_{Fe}) - D_{Fe}(N_{Fe}^{core} \times N_{Sp}) = (N_{Fe}^{core} \times N_{planet}) - (N_{Fe}^{core})^2 - (N_{Fe}^{core} \times N_{Sp}) = (N_{Fe}^{core} \times N_{Sp}) + (N_{Fe}^{core} \times N_{Sp}) + (N_{Fe}^{core} \times N_{Sp}) = (N_{Fe}^{core} \times N_{Sp}) + (N_{Fe}^{core} \times N_{Sp}) = (N_{Fe}^{core} \times N_{Sp}) + (N_{Fe}^{$$

$$D_{Fe} \left(N_{Sp} \times N_{Fe} \right) = \left(N_{Fe}^{core} \times N_{planet} \right) - \left(N_{Fe}^{core} \right)^2 + D_{Fe} \left(N_{Fe}^{core} \times N_{Sp} \right) + D_{Fe} \left(N_{Fe}^{core} \times N_{Sp} \right) - D_{Fe} \left(N_{Fe}^{core} \times N_{Fe} \right) + D_{Fe} \left(N_{Fe}^{core} \times N_{Sp} \right) + D_{Fe} \left(N_{Fe$$

•
$$D_{Fe}(N_{Sp} \times N_{Fe}) = (N_{Fe}^{core})^2 \times (D_{Fe} - 1) + N_{Fe}^{core}[N_{planet} - N_{Sp} + (D_{Fe} \times N_{Sp}) - (D_{Fe} \times N_{Fe})]$$

•
$$0 = (N_{Fe}^{core})^2 (D_{Fe} - 1) + N_{Fe}^{core} [N_{planet} - N_{Sp} + (D_{Fe} \times N_{Sp}) - (D_{Fe} \times N_{Fe})] - D_{Fe} (N_{Sp} \times N_{Fe})$$

•
$$0 = (N_{Fe}^{core})^2 (D_{Fe} - 1) + N_{Fe}^{core} [N_{planet} - N_{Sp} + D_{Fe} (N_{Sp} - N_{Fe})] - D_{Fe} (N_{Sp} \times N_{Fe})$$

• This is a quadratic equation with $x = N_{Fe}^{core}$

Solving

- Quadratic equations have solutions of the form $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
 - In our case, only the positive solution is meaningful.
 - For our equation:
 - $0 = (N_{Fe}^{core})^2 (D_{Fe} 1) + N_{Fe}^{core} [N_{planet} N_{Sp} + D_{Fe} (N_{Sp} N_{Fe})] D_{Fe} (N_{Sp} \times N_{Fe})$
 - $a = (D_{Fe} 1), b = [N_{planet} N_{Sp} + D_{Fe}(N_{Sp} N_{Fe})], c = -D_{Fe}(N_{Sp} \times N_{Fe})$
- Thus:

•
$$N_{Fe}^{core} = \frac{-N_{planet} + N_{Sp} - D_{Fe}(N_{Sp} - N_{Fe}) + \sqrt{\left[N_{planet} - N_{Sp} + D_{Fe}(N_{Sp} - N_{Fe})\right]^2 + 4D_{Fe}(D_{Fe} - 1)(N_{Sp} \times N_{Fe})}}{2(D_{Fe} - 1)}$$

 All variables on the right side are known bulk planetary abundances or are defined from the known fO₂.

An example

- Assume a planet with 100 total atoms (excluding O):
 - Approximate Earth proportions: $N_{Fe} = 28$, $N_{Sp} = 7$, $N_{Lp} = 65$
 - Approximate Earth differentiation fO_2 : $\Delta IW 2$

•
$$D_{Fe} \approx 10^{(2/2)} = 10$$

•
$$a = (D_{Fe} - 1) = 9$$

•
$$b = [N_{planet} - N_{Sp} + D_{Fe}(N_{Sp} - N_{Fe})] = -117$$

•
$$c = -D_{Fe}(N_{Sp} \times N_{Fe}) = -1960$$

•
$$N_{Fe}^{core} = \frac{-b + \sqrt{b^2 - 4ac}}{2a} = \frac{117 + \sqrt{[-117]^2 + 4(9)(-1960)}}{18} \approx 23$$

• $\frac{23}{28} = 82\%$ of the Fe atoms are in the core, and the core contains $\frac{23+7}{100} = 30\%$ of the planet's material.

Limitations

- Some elements other than Fe can partition between the core and mantle
 - Nickel (Ni) is the most abundant of these. In our example, $N_{Ni} \approx 2$.
 - This can be addressed by adding N_{Ni} to N_{Fe} (forcing it to partition in the same proportion as Fe) or by splitting N_{Ni} between N_{Lp} and N_{Sp} .
- N_{Fe}^{core} is very sensitive to the prescribed fO_2 .
 - fO_2 may not be consistent with the amount of O needed to make silicate minerals out of N_{Lp} mantle atoms.
 - This becomes a problem in large planets like Earth, where some of the total O atoms partition into the core instead of making silicates.
 - The only self-consistent partitioning calculation is a numerical one that explicitly considers N_o .
 - For an example, see the supplement to this paper.

