An Analytical Method for Calculating Metal-Silicate Partitioning

By M. C. Brennan

Differentiation

- Terrestrial bodies originated from reservoirs of homogenous material similar in composition to the Sun.
- At some point, bodies above a critical size melted and differentiated into a rocky mantle and a metallic core.
- Rocks are mostly made of silicate minerals.
- Chemical reaction during differentiation determine the size and composition of the two parts (or phases).

Oxygen fugacity $\left(f \mathrm{O}_{2}\right)$

oxidized (O-rich)

- One of the most important parameters during differentiation is the amount (or fugacity) of oxygen (O) atoms present.
- Silicates are rich in O , but metals have few to no O atoms.
- An O-rich (high $f \mathrm{O}_{2}$) planet will have a small core, with most of the iron (Fe) in the mantle.
- An O-poor (low $f \mathrm{O}_{2}$) planet will have a large core containing most of the planet's Fe .

reduced (O-poor)

Elements

- The vast majority of atoms in a planet fall into one of four categories:
- Oxygen (O): the most abundant element, determines the relative size of the core and mantle phases
- Iron (Fe): present in both core and mantle phases (proportions determined by $f \mathrm{O}_{2}$)
- Siderophile (Sp): "iron-loving" elements that always enter the core phase
- Lithophile (Lp): "rock-loving" elements that always enter the mantle phase
- It is possible to calculate the outcome of metal-silicate partitioning using only fO_{2} and the ratios between Fe, Sp, and L .

Element accounting

- Total number (N) of atoms in a planet equals the sum of the atoms in the core and mantle.
- $N_{\text {planet }}=N_{\text {core }}+N_{\text {mantle }}=N_{F e}+N_{S p}+N_{L p}$
- The core consists of all the siderophile elements and a portion of the Fe.
- $N_{\text {core }}=N_{S p}+N_{F e}^{\text {core }}$
- The mantle consists of all the lithophile elements and the rest of the Fe.
- $N_{\text {mantle }}=N_{L p}+N_{F e}^{\text {mantle }}=N_{L p}+\left(N_{F e}-N_{F e}^{\text {core }}\right)$
- Notice that we calculated the total atoms without O, which will be accounted for using fO_{2}.

Accounting for O

- In planets, fO_{2} is measured relative to a mineral redox buffer.
- The iron-wüstite (IW) buffer: $2 \mathrm{Fe}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{FeO}$
- All elements in the mantle are attached to O atoms, so we can use wüstite (FeO) interchangeably with "mantle Fe"
- This allows us to express fO_{2} as a function of iron activities (a)
- $a_{\text {element }}=\gamma_{\text {element }} \times X_{\text {element }}$
- X is a mole fraction, the ratio of atoms of an element to total atoms in the phase
- γ is an activity coefficient, a chemical parameter specific to a particular element and phase. It is usually assumed that $\gamma=1$.
- Therefore, from the definition of the IW buffer:
- $f O_{2}(\Delta I W)=2 \times \log _{10}\left(\frac{a_{F e O}^{\text {mantle }}}{a_{F e}^{\text {core }}}\right)=2 \times \log _{10}\left(\frac{X_{F e}^{\text {mantle }} \times \gamma_{\text {Poo }}^{\text {mantle }}}{X_{F e}^{\text {corer }} \times \gamma_{F e}^{\text {core }}}\right) \approx 2 \times \log _{10}\left(\frac{X_{F O}^{\text {mantle }}}{X_{F e}^{\text {ore }}}\right)$

Partitioning

- The partitioning of a substance between two coexisting chemical phases (such as a core and a mantle) is defined by a partition coefficient (D).
- D is the ratio of the molar concentrations of the substance in each phase:
- $D_{\text {element }}=\frac{X_{\text {element }}^{\text {phase } A}}{X_{\text {elemenent }}^{\text {phase }}}$, where $D=\infty$ if all the atom
or Fe in a differentiated planet: $D_{F e}=\frac{X_{F e}^{\text {core }}}{X_{F e O}^{\text {mantle }}}$
- This can be substituted in to our fO_{2} expression:
- $f O_{2}(\Delta I W) \approx 2 \times \log _{10}\left(\frac{X_{F}^{\text {mantle }}}{X_{F e}^{\text {core }}}\right)=2 \times \log _{10}\left(\frac{1}{D_{F e}}\right)$
- $D_{F e} \approx \frac{1}{10\left({ }^{f O_{2 / 2}}\right)}=10^{\left(-f O_{2} / 2\right)}$
- Thus, choosing the fO_{2} of partitioning determines the planet's D_{Fe}.

Partitioning (cont.)

- Recall that X is the ratio of Fe atoms to total atoms in the phase:
- $D_{F e}=\frac{X_{F e}^{\text {coree }}}{X_{F e O}^{\text {mantle }}}=\frac{\left(N_{F e}^{\text {core }} / N_{\text {core }}\right)}{\left(N_{F e O}^{\text {mantle }} / N_{\text {mantle }}\right)}$
- We can now reintroduce some terms:
- $D_{F e}=\frac{\left(N_{F e}^{\text {core }} / N_{\text {core }}\right)}{\left(N_{F e O}^{\text {mantle }} / N_{\text {mantle }}\right)}=\frac{\left[N_{F e}^{\text {core }} / N_{\text {core }}\right]}{\left.\left[N_{F e}-N_{F e}^{\text {core }}\right) /\left(N_{\text {total }}-N_{\text {core }}\right)\right]}=\frac{\left[N_{F e}^{\text {core }} /\left(N_{F e}^{\text {core }}+N_{S p}\right)\right]}{\left[\left(N_{F e}-N_{F e}^{\text {core }}\right) /\left(N_{\text {planet }}-\left(N_{F e}^{\text {core }}+N_{S p}\right)\right)\right]}$
$\cdot D_{F e}=\frac{N_{F e}^{\text {core }}}{\left(N_{F e}^{\text {core }}+N_{S p}\right)} \times \frac{\left(N_{\text {planet }}-\left(N_{F e}^{\text {core }}+N_{S p}\right)\right)}{\left(N_{F e}-N_{F e}^{\text {core }}\right)}=\frac{\left(N_{F e}^{\text {core }} \times N_{\text {planet }}\right)-\left(N_{F e}^{\text {core }}\right)^{2}-\left(N_{F e}^{\text {core }} \times N_{S p}\right)}{\left(N_{F e}^{\text {core }} \times N_{F e}\right)-\left(N_{F e}^{\text {core }}\right)^{2}+\left(N_{S p} \times N_{F e}\right)-\left(N_{F e}^{\text {core }} \times N_{S p}\right)}$

Partitioning (cont.)

- Simplifying further:

- $D_{F e}=\frac{\left(N_{F e}^{\text {core }} \times N_{\text {planet }}\right)-\left(N_{F e}^{\text {core }}\right)^{2}-\left(N_{F e}^{\text {core }} \times N_{S p}\right)}{\left(N_{F e}^{\text {core }} \times N_{F e}\right)-\left(N_{F e}^{\text {core }}\right)^{2}+\left(N_{S p} \times N_{F e}\right)-\left(N_{F e}^{\text {core }} \times N_{S p}\right)}$
- $D_{F e}\left(N_{F e}^{\text {core }} \times N_{F e}\right)-D_{F e}\left(N_{F e}^{\text {core }}\right)^{2}+D_{F e}\left(N_{S p} \times N_{F e}\right)-D_{F e}\left(N_{F e}^{\text {core }} \times N_{S p}\right)=\left(N_{F e}^{\text {core }} \times N_{p l a n e t}\right)-\left(N_{F e}^{\text {core }}\right)^{2}-\left(N_{F e}^{\text {core }} \times N_{S p}\right)$
- $D_{F e}\left(N_{S p} \times N_{F e}\right)=\left(N_{F e}^{\text {core }} \times N_{\text {planet }}\right)-\left(N_{F e}^{\text {core }}\right)^{2}+D_{F e}\left(N_{F e}^{\text {core }}\right)^{2}-\left(N_{F e}^{\text {core }} \times N_{S p}\right)+D_{F e}\left(N_{F e}^{\text {core }} \times N_{S p}\right)-D_{F e}\left(N_{F e}^{\text {core }} \times N_{F e}\right)$
- $D_{F e}\left(N_{S p} \times N_{F e}\right)=\left(N_{F e}^{\text {core }}\right)^{2} \times\left(D_{F e}-1\right)+N_{F e}^{\text {core }}\left[N_{\text {planet }}-N_{S p}+\left(D_{F e} \times N_{S p}\right)-\left(D_{F e} \times N_{F e}\right)\right]$
- $0=\left(N_{F e}^{\text {core }}\right)^{2}\left(D_{F e}-1\right)+N_{F e}^{\text {core }}\left[N_{\text {planet }}-N_{S p}+\left(D_{F e} \times N_{S p}\right)-\left(D_{F e} \times N_{F e}\right)\right]-D_{F e}\left(N_{S p} \times N_{F e}\right)$
- $0=\left(N_{F e}^{\text {core }}\right)^{2}\left(D_{F e}-1\right)+N_{F e}^{\text {core }}\left[N_{\text {planet }}-N_{S p}+D_{F e}\left(N_{S p}-N_{F e}\right)\right]-D_{F e}\left(N_{S p} \times N_{F e}\right)$
- This is a quadratic equation with $x=N_{F e}^{\text {core }}$

Solving

- Quadratic equations have solutions of the form $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
- In our case, only the positive solution is meaningful.
- For our equation:
- $0=\left(N_{F e}^{\text {core }}\right)^{2}\left(D_{F e}-1\right)+N_{F e}^{\text {core }}\left[N_{p l a n e t}-N_{S p}+D_{F e}\left(N_{S p}-N_{F e}\right)\right]-D_{F e}\left(N_{S p} \times N_{F e}\right)$
- $a=\left(D_{F e}-1\right), b=\left[N_{p l a n e t}-N_{S p}+D_{F e}\left(N_{S p}-N_{F e}\right)\right], c=-D_{F e}\left(N_{S p} \times N_{F e}\right)$
- Thus:
- $N_{F e}^{\text {core }}=\frac{{ }^{-N_{p l a n e t}+N_{S p}-D_{F e}\left(N_{S p}-N_{F e}\right)+\sqrt{\left[N_{\text {planet }}-N_{S p}+D_{F e}\left(N_{S p}-N_{F e}\right)\right]^{2}+4 D_{F e}\left(D_{F e}-1\right)\left(N_{S p} \times N_{F e}\right)}}}{2\left(D_{F e}-1\right)}$
- All variables on the right side are known bulk planetary abundances or are defined from the known fO_{2}.

An example

- Assume a planet with 100 total atoms (excluding O):
- Approximate Earth proportions: $N_{F e}=28, N_{S p}=7, N_{L p}=65$
- Approximate Earth differentiation $\mathrm{fO}_{2}: \Delta I W-2$
- $D_{F e} \approx 10^{(2 / 2)}=10$
- $a=\left(D_{F e}-1\right)=9$
- $b=\left[N_{\text {planet }}-N_{S p}+D_{F e}\left(N_{S p}-N_{F e}\right)\right]=-117$
- $c=-D_{F e}\left(N_{S p} \times N_{F e}\right)=-1960$
- $N_{F e}^{\text {core }}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}=\frac{117+\sqrt{[-117]^{2}+4(9)(-1960)}}{18} \approx 23$
- $\frac{23}{28}=82 \%$ of the Fe atoms are in the core, and the core contains $\frac{23+7}{100}=30 \%$ of the planet's material.

Limitations

- Some elements other than Fe can partition between the core and mantle
- Nickel (Ni) is the most abundant of these. In our example, $N_{N i} \approx 2$.
- This can be addressed by adding $N_{N i}$ to $N_{F e}$ (forcing it to partition in the same proportion as Fe) or by splitting $N_{N i}$ between $N_{L p}$ and $N_{S p}$.
- $N_{F e}^{c o r e}$ is very sensitive to the prescribed $f \mathrm{O}_{2}$.
- $f \mathrm{O}_{2}$ may not be consistent with the amount of O needed to make silicate minerals out of $N_{L p}$ mantle atoms.
- This becomes a problem in large planets like Earth, where some of the total O atoms partition into the core instead of making silicates.
- The only self-consistent partitioning calculation is a numerical one that explicitly considers N_{O}.
- For an example, see the supplement to this paper.

